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Abstract

By convention sweet, by convention bitter, by convention hot, by convention cold,
by convention color: but in reality atoms and void.

Demokrit, V-IV century b.C.

The COACh NIKHEF project is the third project organized for all students in the Master
Of Particle Physics Program of the UvA. In this project a gaseous Cherenkov detector was
simulated, designed, built and operated to measure relativistic charged particles passing
through the detector. With this setup the passage of cosmic muons is measured and a
spectrum of their energy as a function of the pressure and the composition of the gas is
presented.
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Chapter 1

Introduction

This paper is the final report of the Winter Semester 2004-05 NIKHEF Project : COACh,
a great offering and opportunity for all students in the Masters Of Particle Physics Program
of the UvA, who have been coached towards a deeper understanding of an extremely fasci-
nating subject – Elementary Particle Physics.
This year’s subject to the NIKHEF Project is the construction of a gaseous Cherenkov de-
tector for cosmic radiation, mainly muons. An important goal of this project is to detect
cosmic ray muons and measure the spectrum of their energy as a function of the pressure
and composition of the gas.
After a brief introduction to cosmic radiation as well as the theory of the Cherenkov effect
and detector types based on it, the design of our detector and our goals for measurements
with it will be presented. We will proceed with a description of its simulation based on
Monte Carlo techniques, demonstrate its predictions and discuss their power and quality.
Before we present the real measured data and their analysis alongside with our conclusions
from these results, an overview over the construction and setting up of the experiment shall
be given.
The main intention of this report is to give an introduction to common techniques of exper-
imental and analytical Elementary Particle Physics considering our Cherenkov detector as
example as well as to document our work of more than one semester.

We would like to thank our supervisor: Paul Kooijman for his assistance while working
on this project and Elisabeth Koffeman and Auke Pieter Colijn for their assistance when
Paul was not present. Thanks to Marco Kraan of the NIKHEF enginering department for
putting the final design on paper and his advice regarding safty regulations. Also thanks
to Edward Berbee and Niels Stoffelen of the mechanical workshop of the NIKHEF for their
quick assistance and welding of the pipe.
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Chapter 2

Theory

2.1 Cosmic rays

The Earth’s atmosphere is constantly bombarded by all kinds of relativistic particles. The
cosmic ray particles that enter the terrestrial atmosphere are divided into primary and sec-
ondary particles. Primary particles, such as electrons, protons, helium, carbon, iron and
other nuclei, are those particles accelerated at astrophysical sources or other nuclei synthe-
sized in stars. Secondary particles are particles produced in the interaction of primaries with
the interstellar gas such as lithium, beryllium and boron nuclei.
Cosmic rays were discovered by Victor Hess in 1912. After the discovery of X-rays by Wil-
helm Conrad Röntgen in 1895, cosmic rays were seen as radioactive radiation. A survey was
done to investigate radioactive substances everywhere; in the crust of the Earth, in the seas,
etc. The balloon experiment of Hess showed that the flux actually did not decrease when the
altitude of the balloon increased. He concluded that the radiation was not electromagnetic
in nature but had its source from out of the cosmos. The cosmic rays became a powerful
tool (discovery of the positron) of research in physics and Hess was rewarded for his work
with the nobel prize in 1936.

2.1.1 High energy cosmic particles

The energy of the cosmic particles can be enormous. In 1991 the Fly’s Eye cosmic ray re-
search group in the USA observed a cosmic ray event with an energy of 3·1020 eV, many
orders of magnitude larger then the energy of particles produced in accelerators today. While
the composition of the primary particle is not known with certainty, the best guess is that
it was a moderate mass nucleus (something like oxygen).
The energy-flux spectrum of cosmic rays is shown in fig. 2.1. After the turnover at ∼1010 eV
the spectrum behaves as ∼E−2.7 down to the so-called ’knee’ at ∼3·1015 eV. After the ’knee’
it then continues with a steeper slope as ∼E−3.0 up to the ’ankle’ at ∼4·1018 eV. Recent
results of the KASCADE array [6] show a substantial difference in the energy spectra of
individual types of nuclei around the ’knee’. Today, the change in composition around the
’knee’ is considered to be deeply related to a combined influence of acceleration and diffusion
of cosmic rays in our galaxy.
From fig. 2.1 it is clear that the cosmic particle flux decreases rapidly from 1 m−2 s−1 at
∼1011 eV down to 1 km−2 yr−1 at the ’ankle’. Therefore, detection of higher energy particles
is more effective by using a ground array of detectors which makes it possible to sample the
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energies from extensive air showers and infer the particle energies indirectly.

The major questions in astro-particle physics are: where are these cosmic ray particles
coming from, what are their sources and what kind of mechanisms are responsible for accel-
erating them to their detected energy. As for the ’low’ energy particles (E < 1014 eV), their
origin and mechanism are fairly well understood. Most of them are protons and electrons
ejected from the sun’s corona causing the aurora phenomenon in the nothern and southern
hemisphere.
Cosmic rays with energies 1011 < E < 1014 eV are believed to be mostly due to shock ac-
celeration. In 1949 Enrico Fermi came with an explanation for this acceleration mechanism.
According to his theory, protons speed up by bouncing off moving magnetic clouds in space.
Exploding stars (supernovae) are believed to act as such cosmic accelerators. Although su-
pernovae are capable of giving these particles their observed energy, they cannot account
for the high-energy cosmic rays (E > 1014 eV). Cosmic rays in the region 1014 < E < 1019

eV are believed to get their energy from pulsars and galactic winds. The ultra-high energy
cosmic-ray particles (E > 1019 eV) are believed to be accelerated by enormous electric fields,
generated by rapidly spinning, magnetized objects such as neutron stars or active galactic
nuclei (AGN).

Figure 2.1: The all particle spectrum

GZK cutoff

It was long believed that cosmic ray particles could permeate our surrounding universe. But
in 1966 K. Greisen, G. Zatsepin and V. Kuzmin pointed out that high energy cosmic-ray
particles (E > 4·1019 eV) would interact with the cosmic microwave background radiation
(CMB). A high-energetic proton for example would interact with a CMB photon according
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to the reaction pγ → ∆+ → π0p ending up with a pi zero and a proton. In this process
the proton energy and mean free path length would reduce significantly. This energetic
discrimination is also known as the GZK-cutoff. It is interesting to look for events above its
threshold energy of 4·1019 eV. If such events occur then we know for sure that their source
must be local instead of extra-galactic.

2.1.2 Cosmic air showers

When a cosmic ray particle enters the terrestrial atmosphere, it can interact with a nucleus
from the atmosphere. If the energy is sufficient a proton will interact with an O2 or N2

nucleus. After this first interaction π0, π± mesons and baryons will be produced. Multiple
hadronic interactions follow and the number of particles starts to increase rapidly as this
shower or cascade of particles moves downwards in the atmosphere. During their way down
particles lose energy and will not be able to create new particles. The shower reaches its
maximum when more particles are decaying than being created.

Figure 2.2: Vertical fluxes of cosmic rays in the atmosphere with E >1 GeV. Diagram taken
from [1]

When a π− meson is created it will decay according to π− → µ−νµ. The muon, which
has a mean lifetime of 2.20µs, will decay into an electron and two neutrinos by µ− → e−ν̄eνµ.
At sea level most of the charged particles are muons, see fig. 2.2. The vertical flux for muons
at sea level is Iµ±(θ = 0) = 70 m−2sr−1s−1 and their mean energy at sea level is 〈Eµ〉 ≈4 GeV.

To detect the cosmic rays we can use a variety of detectors. Today, much of the collected
data about cosmic rays come from fluorescence experiments such as HiRes Fly’s Eye and
surface detectors such as the AGASA array. AGASA data [4] show an excess of events above
the GZK cut-off.
Because of their electromagnetic interaction with matter, detection of secondary relativistic
charged particles (e.g. muons and electrons) is possible via detectors such as ionisation,
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spark, and cloud chambers. As the particles traverse the atmosphere, detection is also
possible due to another phenomenon commonly known as Cherenkov radiation.

2.2 Cherenkov radiation

Cherenkov radiation is a phenomenon widely used in high energy physics. In 1934 Pavel
Alekseyevich Cherenkov observed blue light emissions from water irradiated with radioac-
tive particles. He discovered that the particles were travelling at velocities greater than the
speed at which light could travel in water. His discovery led to the conclusion that a charged
particle will radiate whenever it traverses a dielectric medium with a velocity greater than
the local phase velocity of light.
In 1937 Tamm and Frank developed a theory on basis of classical electrodynamics explain-
ing completely all the properties of the new radiation, and predicting new properties and
relations. Because of their work P.A. Cherenkov, I.M. Frank and I.Y. Tamm were awarded
the nobel prize in October 1958.

The theory of Tamm and Frank is based on an infinite, isotropic and transparent dielectric
with ε 6= 1 and µ = 1, through which a charged particle is moving along a straight line with
a constant velocity v. The Maxwell equations that determine the fields E and H are given
by


∇×H = 4π

c j + 1
c∂tD

∇×E = −1
c∂tH

∇ · H = 0
∇ · D = 4πρ

Eventually the equations yield a general solution of two Hankel functions of first and
second kind; H1

0 and H2
0 . At small velocities, i.e. βn < 1, the particle does not radiate.

However a completely different result is obtained if βn > 1. The two Hankel functions then
represent a cylindrical wave. The resulting vector potential A is given by

Az = −
∫ +∞

−∞
dω

ie

c
√

2πsξ
e
iω(t− z cos θ+s sin θ

c
n(ω)

)+π
4
i
; As = 0; Aφ = 0 (2.1)

with s, φ and z cylindrical coordinates, θ the angle between the propagation vector and
the z-axis, c and n(ω) respectively the velocity of light and index of refraction, e the particle
charge (in esu), ξ a solution parameter and ω the frequency of the wave.
The integral in 2.1 is in fact a sum of conical waves of frequency ω propagating at an angle
θ to the axis z, which coincides with the motion of the particle (see figure 2.3).

It follows from eq. 2.1 that the particle will only radiate when βn > 1. The radiation
then propagates at an angle θ to the direction of the particle’s motion. From figure 2.3 it is
easy to see that this angle is related to the particle’s velocity β = v

c via the simple expression

cos θ(ω) =
ct

n(ω)
1
vt

=
1

n(ω)β
(2.2)
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Also from eq. 2.2 it is clear that the threshold velocity is given by βthreshn(ω) = 1 which
corresponds to an opening angle θ = 0. Whenever β < βthresh, Cherenkov radiation will not
occur and eq. 2.2 is not defined.

Figure 2.3: The mutual orientation of the vectors E, H and S for the Cherenkov radiation
cone described by the theory of Tamm and Frank. Here S is the Poynting vector, c

n(ω) the
velocity of light in the medium, θ the Cherenkov opening angle and v the velocity of the
particle.

In 1940 V.L. Ginzburg came with a quantum mechanical treatment of the Cherenkov
effect by solving the Dirac equation of a spin 1/2 particle interacting with a photon field. He
derived that the emitted photon possesses two polarization states, one parallel and one per-
pendicular to the plane defined by the intitial momentum of the particle and the momentum
of the emitted photon, congruent with fig. 2.3.

2.2.1 Energy and photon yield

Both Tamm and Frank as well as Ginzburg were able to calculate the amount of energy
emitted per unit path length per unit frequency by a particle with charge Ze. The relation
that Ginzburg found is given by

d2E

dxdω
= −

vph

vgr

Z2α~
c

(
1− 1

n(ω)2β2

)
ω (2.3)

with the fine structure constant α = e2

~c , and vph = ω
k and vgr = dω

dk respectively the
phase and group velocity of light. If the refractive index of the medium is independent of the
frequency1, then vph = vgr and eq. 2.3 will be equivalent to the relation Tamm and Frank
derived. Using the relation ω = 2πc

λ and the assumption above we can rewrite eq. 2.3 in
terms of the radiation’s wavelength

d2E

dxdλ
=

4π2Z2α~c

λ3

(
1− 1

n(λ)2β2

)
(2.4)

1The group velocity is given by vgr = vph(1− k
n

dn
dk

). If the index of refraction of the medium is independent
of the frequency, i.e. dn

dk
= 0, then vph = vgr.
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Because the energy of a photon is related to its frequency by E = ~ω = 2π~c
λ , we can

rewrite eq. 2.4 to get the Cherenkov photon yield in terms of the number of photons emitted
per unit path length and per unit wavelength

d2N

dxdλ
=

2πZ2α

λ2

(
1− 1

n(λ)2β2

)
(2.5)

Integration of eq. 2.4 and eq. 2.5 over dx explains the blue light observation Cherenkov
made. Because dE

dλ ∝ 1
λ3 and dN

dλ ∝ 1
λ2 photon emission will be predominantly in the ultra-

violet part of the spectrum (see fig. 2.4).

Figure 2.4: Differential Cherenkov photon spectrum within the atmosphere. Light emission
at 10 km is given by the dashed line. Light collection given by the continuous line includes
absorption by ozone and Rayleigh and Mie scattering.

To get the total energy per unit pathlength we need to integrate eq. 2.4 over dλ which
gives us

dE

dx
= 4π2Z2α~c

∫
β>βthresh

dλ

(
1− 1

n(λ)2β2

)
1
λ3

(2.6)

and the the total number of photons per unit path length is

dN

dx
= 2πZ2α

∫
β>βthresh

dλ

(
1− 1

n(λ)2β2

)
1
λ2

(2.7)

In practice, the index of refraction n(λ) is fairly constant over the region of interest
[λ1, λ2]. Finally, integration from λ1 to λ2 gives us the interesting relations

dE

dx
= 4π2Z2α~c

(
1− 1

n(λ)2β2

)(
1
λ2

1

− 1
λ2

2

)
(2.8)

dN

dx
= 2πZ2α

(
1− 1

n(λ)2β2

)(
1
λ1
− 1

λ2

)
(2.9)

A detailed discussion about Cherenkov radiation can be found in Zrelov’s book [5].
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Pressure

While the index of refraction is fairly constant over a wavelength region [λ1, λ2], it does
vary significantly when we change the pressure of the gas. The index of refraction therefore
depends more on the pressure than on the wavelength of the light, so we can rewrite 2.2 as

cos θ(P ) =
1

n(P )β
(2.10)

where

n(P ) = 1 + (n0 − 1)
P

P0
(2.11)

with n0 the index of refraction at 1 atm.

2.3 Cherenkov detectors

Cherenkov detectors can be divided into three types; (1) threshold detectors, (2) differential
detectors and (3) ring imaging detectors (RICH or CRID). In this paragraph we will not
discuss the latter.
In general Cherenkov detectors must contain two main elements: (1) a radiator (e.g. water
or gas) through which a charged particle passes thereby making Cherenkov emission possible
and (2) a photodetector also known as a photo multiplier unit (PMT). The choice of the
radiator depends on the velocity spectrum of the particles that would be detected and the
desired radiation length. Accordingly the refractive index and the absorbtion length of the
radiator are chosen. In any case it is preferable that the radiator is highly transparent in the
UV-part of the spectrum to guarantee a high detection efficiency of the Cherenkov light.

2.3.1 Threshold detectors

Threshold detectors are only able to detect the presence of emitted Cherenkov light. In
general they have a fairly simple design (see fig. 2.5).
Threshold detectors only give a signal when the particle’s velocity (usually of π’s, K’s or
p’s) is above a certain threshold velocity i.e. β > βthresh. Therefore they only provide
information on how many particles are present above a certain velocity β in a given time
window. This threshold velocity depends, of course, on the index of refraction n of the
radiator via βthreshn = 1. Above the threshold velocity the Cherenkov opening angle is given
by equation 2.2. Table 2.1 reports on commonly used radiator materials, their refractive
index and their momentum thresholds for different particles. It can be seen that by combining
three threshold detectors using these three radiators, if the momentum of a particle is known,
its type could be uniquely determined for several momentum ranges simply by looking for
signal/no signal in the three detectors. So, threshold detectors can be used for particle
identification.

2.3.2 Differential detectors

Differential Cherenkov detectors (see fig. 2.6) only give a signal for particles within a certain
range of β. They use optical focusing and/or geometrical masking to select particles emitting
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Figure 2.5: Basic design of a threshold Cherenkov detector.

Refractive index pth(GeV) pth(GeV) pth (GeV)
Material n π K p

Aerogel 1.024 0.6 2.2 4.2
Freon 114 1.0014 2.7 9.4 17.8
CO2 1.00043 4.8 16.9 32.0

Table 2.1: Radiators used in Cherenkov detectors and their refractive index and momentum
thresholds for different particles.

Cherenkov radiation in a certain range of opening angle θ ±∆θ and thus specify a certain
velocity interval. A velocity resolution of σβ

β ∼10−5 can be obtained.

Figure 2.6: Basic design of a differential Cherenkov detector.
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Chapter 3

Goals

The COACh project has actually three goals. The project covers both the technical aspect
of building a working Cherenkov detector and the scientific aspect of analysing the collected
data. The educational aspect of achieving those goals can be seen as the main purpose of
the project.

3.1 Educational goal

The most important goal of the COACh project is the educational goal. It can be best
described as ”to learn how to invent and build a new experiment with a group and run it”.
The first part of this goal is somewhat twofold because it contains the collaboration between
the members of the group as individuals as well as with the people of the workshop, who
actually assemble and build the different components of the detector. The second part of
this goal has to do with creating and validating raw data so it could be analysed.

3.2 Technical goal

A concise description of the technical goal is the title of the project itself ”the construction
of a gaseous Cherenkov detector”. This goal cannot be reached without the mechanical
workshop. Our part in this goal is actually to make the plans for the construction and to
deliberate about those plans with the workshop and later to assemble the detector from the
components produced by the workshop. Another technical part of the project is creating
a simulation of the detector and obtaining results with it, which can be compared to our
experimental results.

3.3 Scienctific goal

The third important goal of this project is the scientific goal: ”detecting muons and mea-
suring a spectrum of their energy as a function of pressure and composition of the gas”.
This means the acquisition of raw data with the Cherenkov detector and the analysis of this
data with software packages as ROOT 1 and PAW 2. Eventually a comparison between the
simulated and acquired data is made and results and conclusions are obtained.

1ROOT, an object oriented data analysis framework, see http://root.cern.ch
2PAW: Physics Analysis Workstation, see http://wwwasd.web.cern.ch/wwwasd/paw/
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Chapter 4

Simulation

The very first questions a physicist asks him/herself when thinking of an experiment or de-
signing it, are: ”What exactly will I be able to measure with such a setup? What results
do I expect?” The next questions, after performing the experiment, are: ”Do the measure-
ments fit my expectations respecting the measurement uncertainties? How can a significant
deviation be explained?”
In this chapter we will try to answer the first two questions applied to the special case of
our detector and to lay a basis for approaching the last ones, which will be the subject of
chapter 7: Results on page 59.

4.1 Introduction – the need for Monte Carlo

Since we build a gaseous CO2 Cherenkov detector with a maximum working pressure of
Pmax = 5 atm (this maximum pressure was chosen for safety reasons, the security valve was
set to 6 atm), the maximum Cherenkov cone opening angle θemiss is limited to

θmax
emiss = arccos

1
βn

∣∣∣∣
β=βmax≡1, n=n(P=5atm)=1.00205

' 3.67 . (4.1)

Considering this fact we realize that this value is too small for us to be able to build a
differential Cherenkov detector in order to register each momentum region separately (for
details see section 2.3.2). Thus, the only information we can get from a single event is the
fact that we have detected a charged particle with a certain βparticle exceeding the threshold
for Cherenkov radiation βparticle > βthresh(P ) , where βthresh(P ) follows from the Cherenkov
condition:

1
βthresh n(P )

!= cos θ

∣∣∣∣
θ=θmin≡0

≡ 1 ⇒ βthresh =
1

n(P )
. (4.2)

We see that we cannot draw a serious scientific conclusion on an event-by-event basis. If
we want to measure the elementary particle flux Φ := dN

dS dt in e.g. [s−1 m−2] or intensity
I := dN

dS dt dΩ in [s−1 m−2 ster−1] via a measurement of a passage rate Ṅ in [s−1]:

Ṅ :=
dN

dt
=
∫

dS Φ =
∫

dSdΩ I

of elementary particles through our detector, we have to take a statistical approach. It
can be done by means of a simulation in the following way: first the particles are generated
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according to the theoretical prediction (in our case empirical data reported in [1, 2], which will
be the subject of the next section) considering the intensity I, its composition, momentum
and angular distribution; in the second step the response of our detector to it is simulated.
This is done on an event-by-event basis and takes into account experimental parameters like
dimensions, the kind of gas filled, its pressure P etc. At the end of this procedure stands a
prediction about the expected number of events N per unit time, or an event rate Ṅ in
[s−1]. This we can do for different pressures P , which will give us an idea about elementary
particle fluxes with β-values above the corresponding threshold βthresh(P ). Finally, these
numbers can be compared with actual measured values. This will be done in chapter 7. If
one did the job right, the predicted and measured values correspond respecting the errors.
If this is not the case, either the simulation does not describe the experiment properly, a
mistake was made when performing the experiment or one has discovered new physics. This
approach, quite often used in Particle Physics, is called Monte Carlo method. Indeed
it is the only way to give a satisfying answer to the first two questions raised in the first
paragraph of this chapter.

4.2 Natural elementary particle flux – a short review

Since we do not have any accelerator available, our goal is to measure the natural elemen-
tary particle flux. Leaving a discussion about its origin and creation mechanisms aside,
it consists according to the values reported in [2] mainly of muons, electrons and hadrons
(and their antiparticles) in a rough proportion of 70:30:1. Since the electrons are rather
low-energetic due to their origin in electromagnetical cascades and offer little relevant di-
rectional information about the primary point of the cascade, our goal is a measurement of
the atmospheric muon intensity. Thus, we will have to relate our measurements to the value
of Iµ±(θ = 0) = 70 m−2 ster−1 s−1 with a trend towards lower normalization by 10-15% for
muons with a momentum pµ > 1 GeV, as reported in [2].)

4.3 Detector design – fundamental aspects

The principal design of our detector is already determined by the requirements of measuring
the cosmic muon flux and intensity for different gas pressures. However, an optimal design
is searched for by means of a Monte Carlo method. This approach is very common in
Astroparticle/Particle Physics and implies that the simulation has to be set up first and
that the simulated detector geometry and parameters are varied in the simulation.

4.3.1 Basic geometric parameters of the experiment

Dimensions

To begin our search for the detector optimal dimensions, let us consider the formula for
Cherenkov photon yield

d2N

dxdλ
=

2πα

λ2

(
1− 1

β2n2

)
. (4.3)

where we have taken Z in eq. 2.5 equal to one. Clearly, dN
dλ is linear in x, which means that

an ideal detector should be infinitely long. Of course, it is absolutely unrealistic in terms of
realization. But there is also another problem limiting the length l implicitly: the Cherenkov
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opening angle θemiss is finite and given by eq. 4.1 for the ideal case (P = 5 atm). It implies
that the photons will be spread over a larger area at the detector bottom (limited by detector
tube cross section S) with increasing detector length l. The square root of the detector cross
section area over its length should not be significantly smaller than the emission angle in
radian:

√
S

l

!
> θmax

emiss [rad] .

Yet, there is another aspect to it – a larger detector tube cross section spans a larger solid
angle Ω, therefore the flux and the event rate will be larger: Ṅ =

∫
dS Φ =

∫
dSdΩ I.

Considering all this and two more practical limitations: the finite ceiling height and a limited
detector volume (gas costs & detector weight), we have chosen an aluminum tube with a
length of l = 2 m and an inner radius R = 13.5 cm, which was stored at the NIKHEF
workshop.

Orientation

From the previous chapter we know what we are going to measure – namely the natural
intensity of atmospheric muons. Since by far the largest part of muons originates from
decays of products of hadronic interactions of cosmic protons with the atmosphere molecules,
featuring a decay length roughly given by the height of the primary interaction point from
ground, the shape of the angular intensity distribution is proportional to a cosine squared:
I ∝ cos2 θ, where θ is the ascension angle in cylindrical coordinates. Thus, to obtain the
highest possible event rate Ṅ , the following relationship should hold:

θ
!≡ 0 ,

or in other words, our detector should be oriented orthogonal to the Earth surface.

Mirror and detecting system

So far we have discussed the detector body only. Now a question arises: how to detect
Cherenkov radiation in the most convenient way? We decided for a PMT (Photo Multi-
plier Tube) with an active photocathode diameter of 12.5 cm. However, just putting it at
the bottom of the detector is not the best option – a large fraction of Cherenkov radiation
will simply miss it on the one hand and the muons traversing it can likely induce a correlated
signal by depositing some ionization on the other hand. These are strong arguments to place
the PMT in a short 90◦-sidearm of the same cross sectional dimensions as the detector body
and to install a 45◦-mirror to reflect the photons onto it. We are using a nickelled parabolic
mirror (made of a satellite dish, for details we refer to chapter 5), which focuses the radiation
at the same time. Because of the overpressure inside of the detector body the PMT is placed
outside of it looking through a window. Regular glass window was found to be not very
much transperant to the Cherenkov light UV wavelengths, thus not usable for us, and so
we chose to use a more expensive but highly translucent borosilicate glass window. All the
mentioned geometrical features are fully simulated, for details refer to section 4.5. You can
get an idea of how our detector looks like from fig. 4.2 on page 28.
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4.3.2 Fundamental restrictions for a gaseous Cherenkov detector

The third aspect we needed to think about before making a reasonable design proposal was
the low photon yield of any Cherenkov emission process, especially with a gaseous emission
medium featuring a rather low n, compared to a scintillator for example. Let us compare
the two values:

• a typical plastic scintillator like the one we are using in our coincidence unit (see bottom
of the current section 4.3.2) of 0.5 cm thickness gives us on average ∼ 104 photons per
passage of one MIP (Minimum Ionizing Particle, see [1] for its definition) with a
typical energy deposit per path length of

〈
−dE

dx

〉 ∼= 1.8 MeVcm−1.

• To determine the photon yield of our detector let us assume:

– a charged particle traverses its full length l;

– the wavelength interval ”available” for Cherenkov photon emission is [300, 600] nm,
the lower boundary imposed by increasing opaqueness of CO2 in ultraviolet range,
the upper one by insensitivity of a typical PMT in red and infrared range of the
spectrum;

– the minimum pressure to work with: P
.= 1atm, thus n = nCO2 = 1.00041;

– β
.= 1.

With these assumptions the integration of the differential photon yield eq. 4.3 gives:

N =
∫

dxdλ
d2N

dxdλ

∣∣∣∣∣
β=1, n=nCO2

= 2πα · l ·
(

1− 1
β2n2

) ∣∣∣∣∣
β=1, n=nCO2

·
[
− 1

λ

]600nm

300nm

' 125 ,

which corresponds to dN
dx = 0.63 cm−1.

Clearly, 104 � 125; but in order to realize how difficult the situation really is with Cherenkov
detectors compared to conventional ones we shall remember the fact that the input conditions
stated for our estimation above are for the optimal case (except for P = 1 atm). We have
considered β ≡ 1, but due to the 1− 1/(β2n2) term even a tiny deviation of β from 1 plays
a crucial role. It means that in the worst case, i.e. for a muon with a momentum just above
the detection threshold: pµ− pthresh � pthresh we will get a much smaller number of emitted
photons, typically O(10). In order to know how strong a certain pthresh affects the detectable
fraction of the natural muon spectrum let us calculate it. Our starting point is the threshold
condition 4.2:

1
βthresh n

!= cos θ

∣∣∣∣
θ=θmin≡0

≡ 1 ⇒ βthresh =
1
n

= 0.99959 (!)

with this value we obtain:

pthresh = β γ ·mµ

∣∣∣∣
β=βthresh

with γ :=
1√

1− β2

= 3.69 GeV
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Clearly, pthresh = 3.69 GeV is a rather unpleasant message, since from the last section we
know that the mean value of the flux (dΦ

dp (pmax) = 〈dΦ
dp 〉) lies approximately at pmax = 4GeV.

In other words, at P = 1 atm we will miss quite exactly half of the total energy flux, which
also means due to the exponential drop of the flux distribution: dΦ

dp (p) ∝ e−2.7p, we will miss
much more than half of the particles flux.

Finally we must take into account that for both detection methods we have not yet
considered the limited Q.E. (Quantum Efficiency) of the PMT, typically 〈Q.E.〉 ' 0.15,
and Q.E.peak < 0.3, which worsens the signal amplitude and its statistics even more, not to
speak about the fraction of Cherenkov photons to arrive at the PMT window.

The need for a coincidence unit

Regarding the considerations above, we realize that for a large fraction of muon passage
events the number of Cherenkov photons to eventually hit the PMT cathode will be 1 or
slightly larger. It is evident that under normal condition these events will not be discrim-
inable from noise. Thus, we need an additional coincidence unit to give us a gate for the
signal in the order of 20-50 ns. Such a time gate is fully sufficient as it surely covers the
maximum propogation time of both the muon and the photons in the 2m long detector.

How do we realize now a coincidence unit? If we lived in an ideal world and were not
limited by our budget, we would put 2 round scintillators, exactly the size of the detector
tube cross section at its top and bottom. Unfortunately this is not the case, so we had to
get by with what was available: a quadratic scintillator of 31 × 31 cm and two rectangular
ones of 31 × 50 cm. Thus, we have positioned the quadratic scintillator in 25 cm distance
above the top of the detector tube parallel to the Earth surface, and the two rectangular
ones also in 25 cm distance below its bottom, in such a way, that the area of their overlap is
31× 31 cm. We have built a special metal rack to support the coincidence system. You can
get an idea how the whole setup looks like from fig. 4.2 on page 28. Finally, we connected
the outputs of all the 3 scintillators to a coincidence unit.

4.4 Introduction of values reported by the simulation

Now, after a brief introduction to the experiment and methodology needed for a serious
scientific analysis let us introduce some values to be reported by the simulation, their ex-
perimental accessibility and, in the second part of this section, their predictive power, i.e.
statistical and systematic uncertainties.

Event numbers

The most basic value to be an input to a simulation it the so-called event number Nevent,
which in our case instructs the simulation how many incident muons with a momentum high
enough to emit Cherenkov radiation and to pass through the scintillator coincidence unit
have to be generated. This number alone is of no relevance, but if you compare it with the
total number of muons with pµ > 1 GeV: N incid

µ (i.e. including the ones which do not fulfill
the Cherenkov condition 4.2), you can get an idea about what fraction of the spectral range
[1,∞) GeV you in principle can measure (in our simulation ∞ is approximated by 300GeV,
which is fairly good enough due to the exponential drop of the momentum distribution
of atmospheric muons: dN/dp ∝ e−2.7p). And if you relate Nevent to the registered event
number N rgstd

µ , you will learn about the efficiency of your detector.
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One other interesting value accessible via event numbers is the integrated flux ratio
for different momentum thresholds, which can be compared to integrated fluxes:

N1(pµ > pthresh1(P1))
N2(pµ > pthresh2(P2))

∼=
Φ1(pµ > pthresh1(P1))
Φ2(pµ > pthresh2(P2))

,

as reported in [2] or [3]. So, what we can do is to compare simulated (and, of course,
experimental) event numbers for different pressures P , and therefore different momentum
thresholds pthresh(P ). However, this value will not have a large predictive power, since with
an altering P not only the threshold varies, but also the detector efficiency over the whole
momentum range. Thus we will measure the integration of the flux distribution multiplied
by the efficiency function, a rather abstract value.

Please notice that in the following discussion we will refer to all the introduced N...

numbers as event numbers.

Time passed in the experiment

Before we can transfer the three event numbers mentioned above to corresponding event
rates, we need to introduce an important concept: the so-called time passed in the
experiment tpassed. The need for it is clear: our simulation generates a certain num-
ber of muons traversing our detector, which has to be related to the time, that would
on average have passed in a real experiment: tpassed (note that we omit the 〈 . 〉-notation
for tpassed). How do we obtain it? As discussed in the previous section, we must relate
it to the reference empirical intensity of cosmic muons with a momentum pµ > 1 GeV:
Iµ±(θ = 0, pµ > 1 GeV) = 70 m−2 ster−1 s−1, as reported in [2], which predicts a certain
mean event rate

〈Ṅ1GeV〉 =
∫

dS dΩ I

= S ·
∫

dΩ I with S = 31 cm× 31 cm

∼= S · Ω · I with Ω =
31 · 31 cm2

2002 cm2

= 0.103 s−1 (4.4)

for incident muons passing through the scintillator coincidence unit. Note that in the last
but one step we have used that I(θ) ∼= I0 · cos2 θ = I0 · (1 − O(θ2)), leading to an error of
O(θ3) (< 10−3) after integration, which is reasonable value for small θ, which is true in our
case: θ < 0.088 rad.
Now we can determine the mean time between two events:

〈T1GeV〉 =
1

〈Ṅ1GeV〉
= 9.67 s .

Finally, the tpassed can be calculated:

tpassed = N incid
µ · 〈T1GeV〉 . (4.5)

Please remember that in our notation N incid
µ ≡ N1GeV.
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Event rates

Now we are fully equipped for a discussion of event rates. In general a rate can be defined
as Ṅ... := N... / tpassed. We should keep in mind that in our case it is an average value,
though again we omit the 〈 . 〉-notation. In such a way we can calculate the rate of muons
with a momentum above 1GeV: Ṅ incid

µ (which is by definition just 1/〈T1GeV〉), the rate of
muons emitting Cherenkov radiation Ṅevent (however, it is not implemented in the simulation
program since the value it predicts is experimentally not accessible), the registered muon
rate Ṅ rgstd

µ and the total (p± + µ± + e±) rate Ṅtotal . The latter can be calculated from the
basic proportions Iµ± : Ie± : Ip± = 70 : 30 : 1 (as given in [1]) according to the formula:

Ṅtotal =
(

1.38 +
Ie± + Ip±

Iµ±

)
· Ṅ incid

µ = 1.82 Ṅ incid
µ = 1.88 s−1 , (4.6)

where the 1.38 Ṅ incid
µ -term represents the total natural muon spectrum with

pµ ∈ [0.1, 300]GeV, since Iµ
total / Iµ

1GeV ' 1.38 according to [3].
At the end, let us give the explicit formula for most important reported value, the rate of
registered muons Ṅ rgstd

µ once again:

Ṅ rgstd
µ =

N rgstd
µ

tpassed
. (4.7)

4.4.1 Discussion of errors

Before the software implementation and the results from the simulation are discussed in the
last two sections, let us briefly discuss the statistical and systematic uncertainties (”errors”)
to the values predicted by the simulation.

Event numbers: error discussion

In principle, Nevent is free of statistical errors, as it is an input to the simulation program.
But what about the two other event numbers, in the first place N rgstd

µ ? A proper discussion
of this issue is very difficult and a satisfying answer for all pressures cannot be given. The
reason is the following: surely we can estimate the mean value of registered muons, it is
N rgstd

µ itself, no matter which shape the PDF (Probability Distribution Function)
has. But in order to determine a statistical uncertainty of this predicted value the shape
of the PDF must be known, which will be rather a subject to a Masters of Theoretical
Physics or Numerical Calculus than to the NIKHEF project. You can get an idea about the
complexity of this problem by taking a glance at figure 4.1. It shows two scatterplots: the
number of emitted photons N emit

γ and the registered ones N rgstd
γ versus muon momentum pµ

for P = 3atm. All the points in the right plot, for which N rgstd
γ is 0 represent not registered

muons, although they fulfill the Cherenkov condition. Of course, this happens more likely
for pµ just above threshold with low numbers of emitted photons N emit

γ , but not exclusively,
as a muon can make a trigger by passing through the corners of both scintillators and not
traversing the detector body at all. We can give a very poor estimate by assuming a binomial
distribution for the number of detected particles (each muon is assigned the same detection
probability, no matter what its momentum etc. is, which is quite a crude approximation).
Then

∆(N rgstd
µ )stat =

√
N rgstd

µ · (Nevent −N rgstd
µ )

N2
event

.
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Figure 4.1: Nemit
γ and N rgstd

γ vs. pµ

If we try this equation on some numbers, say our dataset for P = 3 atm: Nevent = 2000 ,
N rgstd

µ = 1842 , we obtain ∆(N rgstd
µ )stat = 0.1 (!). So, even if the shape of the PDF will affect

this value by 1000%, we will still get an uncertainty of only 1 (!) detected event, which is
really small compared to the error ∆(tpassed)total (see next paragraph) and therefore will be
neglected in the following discussion.

Now, let us come to the systematic error ∆(N rgstd
µ )syst. There are several factors that

play a role. First, there is a ”geometrical” error, which accounts for the imperfections of
the simulation program. For instance, the reflectivity of the mirror, though above 90% in
real life is assumed to be 1, its shape is not a perfect ellipse etc. Second, we must assume a
systematic error of approx. 5% for the manometer: ∆(P ) ∼= 0.05 P . This leads to an error
in the refractive index ∆(n) and ∆(N emit

γ )syst. Though, these two error sources will have
a rather insignificant contribution mainly to the momentum region just above threshold
pthresh

µ (P ) with low numbers of emitted photons N emit
γ . This is due to the fact that the

decision if a muon is registered or not is made binary: it is positive if the number of registered
photons is above a threshold value N thresh

γ
.= 1 or more. The next, by far largest contribution

arises from estimation of the detection threshold N thresh
γ as such. In the simulation we have

assumed N thresh
γ

.= 1, but in reality this value can likely be in the order of 3 or even more
photons. Finally, the 3 scintillator trigger will not be 100% efficient, giving an additional
bias to the data.
Considering all the arguments presented above, we estimate the total error of N rgstd

µ to
approximately 15%:

∆(N rgstd
µ ) ≡ ∆(N rgstd

µ )syst
.= 0.15 ·N rgstd

µ . (4.8)

What is now the error to N incid
µ , the number of incident muons with a momentum above

1 GeV? Since this value is not experimentally accessible and only serves for the calculation
of tpassed, let us focus this question in the next paragraph.
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Time passed in the experiment: error discussion

In the previous paragraph we have already discussed the fact that Nevent is free of statistical
errors, but tpassed := N incid

µ · 〈T1GeV〉 is not:

∆(tpassed)stat =
√

N incid
µ · 〈T1GeV〉 , (4.9)

which reflects the real physical situation – you can wait for, say, 2000 muons above 1 GeV,
but the time you will need to collect them will fluctuate with the square root of the number
of particles you wait for (in our example

√
2000), as we have a Poisson distribution of events

in time due to a low event probability.
Yet, there is another, systematic uncertainty to tpassed, which arises from a systematic

error both in 〈T1GeV〉 and N incid
µ .

Let us devote our attention to the error of 〈T1 GeV〉 first. It is roughly given by 15%:

∆(〈T1GeV〉) ' 0.15 〈T1 GeV〉 = 1.45 s . (4.10)

We come to this estimation via Gaussian error propagation from the uncertainty stated for
Iµ±(θ = 0, pµ > 1 GeV) in [1, 2], being a lower normalization by 10-15%, which leads to a
higher value for 〈T1GeV〉 according to eq. 4.4; plus an additional factor of ∼7% accounting
for varying Sun activity on different time scales and clouds (water vapor plays a crucial role
in energy loss due to ionization, as noticed recently an analysis of the correlation between
weather and cosmic muon rates: [2]).
Now, let us focus the systematic error to N incid

µ , the number of incident muons with momen-
tum above 1 GeV. It is important to know that our detector stands in the T-building on the
NIKHEF compound, in the former Target Area of the linac (LINear ACcelerator), which
was an e− machine. Considering this, we may assume the thickness of the roof concrete
to be 5 radiation lengths (see [1] or [2] for its definition). This corresponds to roughly
5 · 10.7 cm ' 50 cm, which will decelerate the muons by

〈
−dE

dx

〉
' 4.2 MeVcm−1 on average,

thus decreasing their momentum by approx. 0.2 GeV. Of course, this affects the number of
incident muons N incid

µ with momentum above 1 GeV, since the whole spectrum is shifted.
The effect1 is

∆(N incid
µ ) ' 0.07 ·N incid

µ , (4.11)

as concluded from the data in [3].
Thus, we conclude from eqq. 4.10, 4.11 for the systematic uncertainty to tpassed:

∆(tpassed)syst =
√
{∆(N incid

µ )syst · 〈T1GeV〉}2 + {N incid
µ ·∆(〈T1 GeV〉)}2

=
√

0.072 + 0.152 ·N incid
µ · 〈T1GeV〉

' 0.17 · tpassed . (4.12)

Now, using eqq. 4.9, 4.12 it is an easy job to give the total error to tpassed:

∆(tpassed) :=
√
{∆(tpassed)stat}2 + {∆(tpassed)syst}2

⇒ =
√

N incid
µ · 〈T1GeV〉2 + 0.172 · t2passed . (4.13)

1There is another aspect to it: formally seen both Nevent and N rgstd
µ will be reduced; but the effect on

Nevent, which is assumed to be errorless, is included via N incid
µ in tpassed, whereas a similar argument holds

for N rgstd
µ for the reason that it gives you the efficiency of the detector response, while the rate information

is included in tpassed again.
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Please note that in the whole discussion of this paragraph we have used that all contributing
errors are independent on each other and add according to the Gaussian theorem of error
propagation.

Event rates: error discussion

Now it is an easy job to give the formulas for errors on event rates. For the incident muon
rate we obtain due to its definition:

Ṅ incid
µ :=

1
〈T1GeV〉

eq.4.10⇒ ∆(Ṅ incid
µ ) =

∆(〈T1GeV〉)
〈T1GeV〉2

= 0.15 · Ṅ incid
µ

= 0.015 s−1 .

With the registered muon rate Ṅ rgstd
µ things are not much more complicated. We obtain the

error ∆(Ṅ rgstd
µ ) once again straight forward via Gaussian error propagation:

Ṅ rgstd
µ =

N rgstd
µ

tpassed

⇒ ∆(Ṅ rgstd
µ ) =

√√√√{∆(N rgstd
µ ) · 1

tpassed

}2

+

{
∆(tpassed) ·

N rgstd
µ

t2passed

}2

eqq.4.8, 4.13⇒ =

√√√√{0.15 · Ṅ rgstd
µ

}2
+

{
∆(tpassed) ·

N rgstd
µ

t2passed

}2

. (4.14)

The discussion of the uncertainty to the total event rate Ṅtotal including all charged particles
is not that easy. Let us recall eq. 4.6. At first sight we might assume

∆(Ṅtotal)
?= 1.82 ∆(Ṅ incid

µ ) ,

but there is also a systematic error to the factor 1.82, which is very hard to estimate. It
consists of two parts: Iµ

total / Iµ
1GeV ' 1.38 and (Ie± + Ip±) / Iµ± ' 0.44. The second factor

has an error of 100%, since our detector is positioned in a former accelerator building with
concrete shielding, which should by design screen off electrons. The same reason will account
for a significant error to the first factor. Regarding the arguments presented above we are
forced to conclude, that Ṅtotal is nothing more but a guide value with an error of O(100%).

4.5 The simulation algorithm in detail

After the general features of the experiment have been discussed in the sections above, let
us become more concrete and discuss the features of the simulation program in a more
detailed way. However, this does not mean that we will cover each aspect of it. For a really
detailed insight, please refer to the simulation code. You can download it from http://
www.nikhef.nl/~x50/NIKHEF_proj/cher.C, it is written in C++ under ROOT, a package
widely used in all fields of physics where you have to deal with statistical data analysis and
simulation. It offers many more features like the possibility to display histograms in up to
3 dimensions. As in the program a lot of geometrical calculations are made, e.g. rotations

26

http://www.nikhef.nl/~x50/NIKHEF_proj/cher.C
http://www.nikhef.nl/~x50/NIKHEF_proj/cher.C


of Euclidean vectors from frame to frame, the ROOT package PhysicsVector is used.
Most of their specific commands in the code are self-explaining, for details you can refer for
ROOT to http://root.cern.ch/ and to ftp://root.cern.ch/root/doc/chapter15.pdf
for PhysicsVector.

In the following a short summary of geometrical parameters of our experiment and their
definitions in the simulation program is given (for visualization, please refer to fig. 4.2 on
page 28):

l= 200 cm total height of the detector body
l side= 12 cm length of the sidearm measured from main trunk pipe
R= 13.5 cm radius of the trunk pipe
K up= 31 cm size of the upper scintillator coincidence unit (quadratical)
K do= 31 cm size of the lower scintillator coincidence unit (quadratical)
l up= 25 cm distance of the upper coincidence unit from detector trunk
l do= 25 cm distance of the lower coincidence unit from detector trunk
R pmt= 6.25 cm radius of the PMT window and the PMT itself

Introduction to the main features of the algorithm

Before we start to introduce the simulation of each physical process, a short overview of the
main features of the algorithm shall be given.

What does the simulation program do step-by-step? In the first place, the muons, i.e.
their momenta and propagation tracks inside of the detector body are randomly generated
using the function muon(). The next step is the emission of Cherenkov photons. This is done
in the function gamma() by successive generation of randomly distributed photon emission
points along the muon track and the corresponding photon directions on the Cherenkov cone.
Later in get mirror(~r, ~n), which is called by gamma(), the reflection point on the mirror
at the detector bottom and the propagation direction after the mirroring are calculated.
Finally, in gamma() for each photon the decision if it is registered or not is taken. The
discrimination is done on a geometrical basis, i.e. if a photon hits the detector window
for the PMT at all, and on a wavelength dependent probability for a photon to trespass
the glass of the window and to excite a photoelectron from the alkali cathode following its
quantum efficiency. To get a better idea about the simulation steps, take a look at fig. 4.2 on
page 28. There a muon track and one of the photon tracks are displayed, together with the
corresponding coordinate frames, which are useful for mathematical description. The last
two parts of the simulation program to be mentioned are cher(), the main function which
calls muon(), gamma() and keeps track of the number of registered muons N rgstd

µ etc., and
canvas(), a rather uninteresting function responsible for the initialization of histograms in
ROOT.

In the following we will refer to all function and variable names in the simulation code
by a typewriter font, e.g. |~pµ| ≡ p.
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Figure 4.2: left: Technical drawing; right: Perspective drawing of the detector. The mirror
is drawn in light green at the bottom of the detector, the coincidence unit on top and beneath
the detector in light blue, plus an arbitrary muon trace in dark blue with the two triggering
points, the entering point at the top, the exit point through the mirror and the point where
to it would have been reflected, if it was a photon (the actual photons will be spread around
it). Also the coordinate frames are shown: the lowest one in red is the detector frame, also
at the bottom, tilted to the detector frame in green is the mirror frame, upper most in blue
is the muon frame.
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Figure 4.3: left: Muon momentum spectrum between 1 and 30 GeV; right: Muon spectrum
as presented in [3]

Figure 4.4: Cutoff by Cherenkov condition in momentum distribution for P=1 atm (left) and
P=5 atm (right)

Generation of the muon momentum distribution: muon()

The muon, being an elementary particle, is fully characterized by its position in the Minkowski
space xµ and by its 4-momentum pµ. For our purposes only the spatial coordinates ~xµ of
the muon track and the the absolute value of its momentum |~pµ| ≡ p are interesting. In this
paragraph a proper random generation of the latter will be focused.

As already discussed, cosmic muons follow a certain distribution dN
dp ≡ dNdp, which can

be roughly parameterized as dN
dp ∝ p−2.7. However, this approximation has validity only

in the momentum range between 10 and 1000 GeV, and becomes steadily poorer in the
important range towards 1 GeV, since here the γ-factor of the muons is smaller and more
muons decay on their way to the Earth surface. Thus, analytical methods cannot be used
for random number generation here and the values have to be interpolated from a table.
We have used a rather straight forward acception-rejection method. It works as follows:
assume you want to generate a series of variables x which follow a certain PDF (probability
distribution function) f(x); you generate a pair of independent random numbers v1, v2 and
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calculate f(v1). If v2 < f(v1), you accept v1 as a draw from your PDF, x
.= v1; else you

restart with a new pair of v1, v2.
As the table in [3] is rather not up-to-date, we decided to interpolate the data from a

graph in fig. 24.4 in [2]. However, because of the dN
dp ∝ p−2.7 dependance p2.7 · dN

dp ≡ pdNdp

was displayed by the graph, so each value of the table has to be divided by p1.7. We have
simulated the momentum range |~pµ| ∈ [1, 300] GeV, which is a very good approximation
because of the exponential drop for high energies.

Now, not every muon above 1 GeV will fulfill the Cherenkov condition 4.2. So, for each
|~pµ| the corresponding emission angle θemiss is calculated. Logically, the program exits the
while loop only in the case θemiss > 0.

You can compare the generated momentum spectrum with a figure from [3] in fig. 4.3
on page 29. Further, in fig. 4.4 the effect of Cherenkov condition discrimination can be seen
for P=1 and 5 atm.

Generation of muon incidence points & propagation directions: muon()

After the absolute momentum of the muon is generated, its track through the detector is
simulated.For a proper simulation of this part we do not need anything else but a starting
point and a propagation direction. Since we use a coincidence unit anyway, it makes sense
to generate randomly an entering point at the upper coincidence unit, r mu up and an exit
point at the lower one r mu do. The difference of these two will give us the propagation
direction n mu=(r mu do-r mu up)/|r mu do-r mu up|. Clearly, it is pragmatical to choose
the starting point for further simulation steps to be the trespassing point of the muon through
a plane defined by the top of the detector body. For this purpose we introduce the path
length parameter s (s, in cm), so that ~xµ(s) ≡ r mu(s) = ~rstart + s · n mu and pass ~rstart to

the function gamma() by setting r mu(s)
∣∣∣
s=trespass

.= ~rstart.

Generation of photon emission points along the muon track: gamma()

By now we have generated muons trespassing our detector, but nothing else happened yet. In
the next step we will implement the emission of Cherenkov radiation. What we want to know
at the end is if the photons hit the PMT window and which wavelengths they have, since
its transitivity and the quantum efficiency of the PMT – in other words the registration
probability – will depend on it. To approach the problem properly, we have to keep two
things in mind: on the one hand, the wavelength of emitted photons will follow a certain
PDF dN

dλ ; on the other hand the spatial points of emission will be randomly distributed along
the muon track and their total number will depend on the probability to emit Cherenkov
radiation per pathway dN

dx . Both PDF’s can be calculated by the virtue of a formula for d2N
dλdx

(as given in eq. 4.3): dN
dλ =

∫
dx d2N

dλdx , dN
dλ =

∫
dλ d2N

dλdx .
Let us consider the ”spatial” part of the problem. As argued above, we start with

dN

dx
= K ·

(
1− 1

β2n2
CO2

)
with K[cm] := 107 · 2πα ·

(
λmax − λmin

λmaxλmin

)
, λ in nm,

where λmin, max = 300, 600 nm are the wavelengths imposed by limited properties of our
apparatus, e.g. transmittancy of borosilicate glass of the window for the PMT. Now we have
the probability for photon emission per pathway of 1 cm. The next question to deal with, is
how to distribute the emission points properly along the muon track. Clearly, the dN

dx PDF
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Figure 4.5: left: 3-Dimensional distribution of photon emission points for 1500 muons at
P = 4 atm inside of the detector pipe. Its round shape is clearly visible; at the bottom,
tilted by 45◦, the mirror can be seen. Please remark, that the scales for x-y-plane and z-axis
are different; right: Distribution of photon propagation directions ~nγ for one muon. In this
diagram the scales of the axes are not the same as well.

will be uniform (i.e. will have a constant value). On the other hand, the number of emitted
photons will fluctuate over a certain pathway. To approach the problem, we will divide the
muon track in small steps of ∆x ≡ dx, with ∆x being small enough, so that we can assume
a Poisson distribution for the number of emitted photons per ∆x; we go even further with
approximations and set ∆x in such a way that ∆N

∆x = 0.1 [∆x−1], with such a choice we can
neglect cases where more than 1 photon is emitted, due to their extremely low probability.
Then ∆x = ∆N/dN

dx = 0.1/dN
dx and we can simulate radiation emission by generating one

photon per ∆x with a probability of 0.1. Thus, we ”propagate” the muon along its track in
a for-loop by ~rγ(s) = ~rµ +s ·nµ , where s is increased in steps of ∆x and generate a photon if
the following conditions are fulfilled: first, a random number generated in the range [0, 1] lies
between 0 and 0.1; second, the muon is inside of the detector body (orthogonal distance to
the detector pipe axis is smaller than R, the inner radius of the pipe). But how do we tell the
programm, when the emission is to stop, i.e. when the muon exits the detector at its bottom?
Let us anticipate the function get mirror(~r, ~n) first. For each pair of ~r, ~n it calculates the
point ~rmir ≡ r mir, at which a particle with these parameters will trespass the mirror at the
detector bottom and the propagation direction ~nmir ≡ n mir after the mirroring. Thus, if
we determine r mir for the mirror and calculate the path length parameter s for this point
and divide s by ∆x, we will know where to stop the emission, i.e. when to stop the for-loop.
You can get an idea of how the photon emission points are distributed in fig. 4.5 on page
31. Furthermore, we have checked that the number of emitted photons Nemit for fixed muon
momentum |~pµ| and pressure P indeed fluctuates like

√
Nemit, as it should be the case for a

Poisson distribution.

Simulation of the Cherenkov emission cone: gamma()

So far we have enormously proceeded in understanding the simulation: we have modelled
muons and their traces, we know how many and where photons will be emitted.
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Next, we have to deal with assigning the photons a propagation direction. Clearly, the
directions of the photons ~nγ lie on the Cherenkov cone. It is easiest to describe the emission in
the muon frame first, and to transform the results from the muon frame to the detector frame
afterwards. In the muon frame things look rather simple: we can restrict the propagation
directions to the Cherenkov cone by setting the θ~nγ -value of ~nγ in polar coordinates to
θ~nγ

.= π − θemiss
2 and distribute them on the cone by generating the φ~nγ -values randomly

from [0, 2π).
All we have to do now is to transform ~nγ from the muon frame to the one of our detector.

The muon frame (blue) is defined in the detector frame (red) by two conditions (see fig. 4.2
on page 28): first, its zµ-axis is given by the negative propagation direction of the muon −~nµ,
which fixes two of three parameters for a rotational transformation in 3 dimensions; second,
its yµ-axis lies in the x-y-plane of the detector frame and is given by ~yµ := −~z×~nµ = ~z×~zµ.
Here ~z is the z-axis of the detector frame, while ~zµ is the z-axis of the muon frame. Thus,
the transformation is given by two3 successive rotations: around the yµ-axis in the muon
frame and around the z-axis of the detector frame. Now, the φ-values of ~nγ are distributed
randomly anyway. In other words, the second rotation does nothing else but manipulate
a random variable, which is cyclic, by a fixed value. So for our purposes it is sufficient to
perform only one rotation around the yµ-axis in the muon frame, which is done with the
same parameters to every generated photon for a fixed muon track. To visualize this process
see fig. 4.5 (right) on page 31.

Registration of Cherenkov photons: gamma()

Now that we know all propagation parameters of Cherenkov photons there are just two more
steps before their final registration. Geometrically seen, all we want to know is if they hit
the PMT window or not. After they are mirrored by the function get mirror(~r, ~n) and
we know the new starting point ~rmir and propagation direction ~nmir, we calculate straight
forward the propagation parameter s for the photon to hit the wall with the PMT window.
Next, we determine the impact point ~rγ

incid ≡ r gamma inc = ~rmir + s · ~nmir, and from it
its distance to the axis through the middle of the PMT window, which we discriminate at
RPMT = 6.25 cm:

(rγ
incid)

2
y + (rγ

incid)
2
z

!
< R2

PMT .

In other words, we can tell now if a photon can be detected or not.
Logically, the last step is to tell if a photon will be detected or not. For this we need

to generate randomly the photon wavelength λ and to look up the detecting efficiency
Pdetect(λ) ≡ P in a table.

To perform the wavelength generation we need the PDF for the wavelength dN
dλ . We

use the relation dN
dλ =

∫
dx d2N

dλdx and eq. 4.3 again. Trivially, we obtain dN
dλ ∝ 1

λ2 . Here
the equation for the cumulative distribution N(λ) =

∫ λ
λmin

dλ′ dN
dλ′ (λ

′) = 1
λmin

− 1
λ can be

solved analytically for λ and thus we use an analytical method for the random wavelength
generation. It works as follows: we generate a uniform random value for the cumulative
distribution Nrnd from the interval [N(λmin), N(λmax)], set it equal to N(λ) = Nrnd and

2Note that in our case the propagation direction of the muon points to an opposite direction of the zµ-axis
3A general rotation is defined by three so-called Euler angles, here we have only two of them, since it is a

special case (see second condition).
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Figure 4.6: left: Wavelength distribution dN
dλ (λ) for Cherenkov photons; right: Detection

efficiency Pdetect.

solve this equation for λ, which will then be properly distributed:

λ =
1

1
λmin

−Nrnd

.

The results of this method are demonstrated in a histogram in fig. 4.6 on page 33.
Let us focus on the detecting efficiency Pdetect(λ) ≡ P in the next lines. It is a combi-

nation of the transmittance probability through the PMT window, which is made of 2 cm
thick borosilicate glass, and the quantum efficiency of the PMT. Since both effects are not
correlated we can combine them to a new value Pdetect(λ) by simple multiplication. The
resulting graph can be seen in fig. 4.6. Obviously, the smartest way to ”look up” a detection
efficiency for a certain wavelength would be from a polynomial, Taylor-approximated to the
values of the table to a sufficiently high order (4th). But we should keep in mind that we
will have to perform this action for each photon, with about 50 per event of them arriving
at the window on average, so we decided for a less CPU-time consuming lookup in a table
via if-conditions.

Mirroring of the emitted Cherenkov photons: get mirror(~r, ~n)

We are almost finished with setting up the simulation now, the only missing part is the
mirroring process which we have left out so far. You may already have guessed it: there is
nothing physically relevant to this function, all it is about are geometrical considerations. So
let us apply a citation of Landau here: ”This calculation is in principle trivial, it is easier to
do it by yourself, than to follow the presentation of the solution” and just give a brief outline
of how things work here.

The first ”boundary condition” is the parabolic shape of the mirror (with different
quadratic coefficients a, b for the both directions, the smaller one, a being exactly 1

2 of
the larger one: a = 1

2b, since the mirror should focus perfectly while tilted by 45◦), so it is
easiest to transform the generation point ~rγ and the propagation direction ~nγ of the photon
into the mirror frame (marked green in fig. 4.2 on page 28) by rotating them by 45◦ around
the y-axis. Now we have a classical geometrical problem – to calculate the point of inter-
section for a straight line and a parabolic surface. This calculation is done by means of the
path length parameter s again. Afterwards we check if the photon is on the physical mirror
surface, which is limited in its size unlike the mathematical problem. Should this not be the

33



Figure 4.7: left: Distribution of mirroring points ~rmir; right: Distribution of propagation
directions ~nmir after the mirroring.

case, the photon is lost. You can get an idea about the distribution of mirroring points on
the mirror surface on fig. 4.7 on page 34.

We know already where the mirroring happens, thus the new starting point ~rmir. What
is still missing is the new propagation direction. For this we need the orthogonal vector to
the surface of the mirror ~north. Once we have it, the calculation is fairly easy:

~nmir = ~nγ − 2(~nγ · ~north) · ~north ,

as follows trivially from geometric considerations. The only tricky point is to calculate the
orthogonal vector to the mirror surface at the point ~rmir: ~north(~rmir) . It can be accessed via
the following relation:

~north = ~ngrad × ~nequal ,

where ~ngrad is the (3-dimensional) gradient vector to the parabolic surface and ~nequal is the
tangential vector to the curve of equal level on the parabolic surface in z-direction, thus the
solution to zequal =

√
x2

equal − y2
equal = const. Geometrical argumentation yields (except for

degenerate cases like ry
mir = 0):

~nequal =
(±1, ∓C2, 0)t

|(±1, ∓C2, 0)t|
for ry

mir

{
<
>

}
0 with C2 =

a

b
· rx

mir

ry
mir

;

~ngrad =

(
ny

equal, −nx
equal, 2(a · ry

mir − b · rx
mir)

)t∣∣∣∣(ny
equal, −nx

equal, 2(a · ry
mir − b · rx

mir)
)t
∣∣∣∣ .

Now all we have to do is to apply the inverse rotation by 45◦ to go back to the detector
frame. You can see a distribution of propagation directions ~rmir after the mirroring in fig.
4.7.
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4.6 Event rates predicted by the simulation

After having presented the event generation and detector simulation algorithms we are ready
to discuss the predictions given by our simulation program. These predictions will be a basis
for the discussion of our measurements in chapter 7: Results on page 59. For definitions of
the predicted values please refer to section 4.4: Introduction of values reported by
the simulation program on page 21. In particular tpass is calculated via eq. 4.5, its error
∆(tpass) via eq. 4.13, Ṅrgstd via eq. 4.7, its error ∆(Ṅrgstd) via eq. 4.14.

Before we come to the actual data and predictions, you might find it interesting to take
a look at a survey of the most important characteristic values and parameters for different
pressures of P = 1, 2, 3, 4, 5 atm in table 4.1 first. The probably most interesting values are
stated in the last two columns: the momentum threshold for emission of Cherenkov radiation
pthresh and the average number of emitted photons 〈Nyield〉opt for optimal conditions (β

.≡ 1,
the pathway of the muon inside of the active medium being the full detector length l).

P [atm] n θmax [rad] βthresh pthresh [GeV] 〈Nyield〉opt

1 1.00041 0.029 0.9996 3.69 125
2 1.00082 0.040 0.9992 2.61 250
3 1.00123 0.050 0.9988 2.13 375
4 1.00164 0.057 0.9984 1.84 500
5 1.00205 0.064 0.9980 1.65 625

Table 4.1: Characteristic values for our experiment

We have made several runs of the simulation program for the pressures above. The
number of events and therefore the statistical basis differs for different P , depending on
needed vs. available calculation time (clearly, a run with a high refractive index n(P ) will
consume more CPU time, as then more photons are to be generated along the muon track due
to a higher dN

dx dλ). You can view all the predicted values including their errors in table 4.2.
Later, after having taken data with the detector, we have also run the simulation program
with the same pressures and refractive indices we have actually run the detector with4. In
order to do that we also implemented in the simulation the fact that the detector was used
with a mixture of air and CO2 gas, and that the total pressure and refractive index for each
run was calculated from the gas composition on that run. This would be fully explained in
section 6.2. You can view the predictions from these later runs in the lower part of the table.

You might regard it to be interesting to take a look at the numbers of emitted and
registered Cherenkov photons for different muon momenta pµ in fig. 4.8 on page 37. What
makes these diagrams worth mentioning is the fact that they give quite a good idea about
the detection probability for different pµ. What we see for both the emitted and registered
photons is a strong, 1−exp(−pµ) - like rise for low muon momenta. Even more interesting is
the fact that the average number of registered photons is significantly smaller than the other
one. Furthermore, an important difference are the many points below the main ”curve” for
registered photons, which is due to the fact that many of them will not be geometrically
detected.

4To set a certain pressure, say 2 atm, was not easy because we did not have a second manometer, whereas
using the one on the gas bottle was not possible due to the fact that there was a not predictable pressure
drop along the gas filling line
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Figure 4.8: Numbers of emitted and registered Cherenkov photons for different muon mo-
menta pµ for P = 1, 2, 3, 4 atm (top left, top right, bottom left, bottom right with this page
orientation)
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Chapter 5

Setup and Building of the Detector

In this chapter we present the setup of the detector in detail. The dimensions are already
known from the discussion in chapter 4: simulation on page 17. First we will report about
the setup itself, later about the different components in it.

5.1 Detector setup

5.1.1 Basic setup and detector quality

As we have seen from the discussion in chapter 4, Cherenkov radiation is a very weak source
of photons. Therefore light collection and detection must be as efficient as possible in our
experiment. As a radiator we chose to use an aluminum tube filled with CO2 gas. For the
collection of the Cherenkov light we use a parabolic mirror which focusse the light onto the
main PMT.
We know from chapter 4 that the number of photoelectrons (p.e.) emitted from the cathode
of the PMT in a wavelength range from λ1 to λ2 is given by

Np.e. = 2πα L

∫ λ2

λ1

dλ
1
λ2

QE(λ) εdet(λ) sin2 θemiss(λ) (5.1)

where εdet(λ) is the detection efficiency defined below, QE(λ) the quantum efficiency of
the photomultiplier, L the length of the detector and

sin2 θemiss(λ) = 1− 1
β2n(λ)2

with θemiss(λ) the Cherenkov opening angle discussed earlier, n index of refraction of
the radiator (as a function of both pressure P and wavelenght λ) and β the velocity of the
incoming particle.
The efficiency εdet(λ) is defined by the product of the transmittivity curve Trad(λ) of the
radiator, the reflectivity of the mirror R(λ) and the transmittivity curve Twin(λ) of the
window in front of the main PMT

εdet(λ) = Trad(λ) R(λ) Twin(λ)
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In our case, the index of refraction is approximately constant over the accessible PMT
range, [300,600]nm, i.e. n(λ) = 〈n(λ)〉. Furthermore, we put QE(λ) and εdet(λ) outside of
the integral in eq. 5.1 and use their maximum values1. Then we can rewrite eq. 5.1 as

Np.e. ≈ LN0

〈
sin2 θemiss(λ)

〉
(5.2)

where

N0 = 2πα QE(λ)max εdet(λ)max

∫ λ2

λ1

dλ
1
λ2

(5.3)

is the Cherenkov quality factor of the detector. So in order to optimize the response of
our detector we need to work on a design which maximizes this parameter.

5.1.2 Mechanical setup

Because of the small value of sin2θemiss(λ) and the usually low values of N0, in order to have
a sufficient number of photoelectrons emitted in the PMT, gaseous Cherenkov counters are
usually rather long. Taking into account the limitations mentioned in chapter 4, we decided
to use a total radiator length of 2m. Then eq. 5.2 can be written as

Np.e. ≈ QE(λ)max εdet(λ)max N (5.4)

where N is the photon yield given by eq. 4.4.

The complete setup is shown in fig. 5.1. The external structure of the detector consists
of a tube of aluminum with an outer diameter of 26.8cm. At the top, the tube is closed
with an aluminum plate of 2mm thickness. According to a simulation done by the NIKHEF
enginering department this plate needed to be reinforced with a couple of metal strips (7) to
stand pressures up to 10 atm in order to have a safety factor of 2 (see fig. 5.2 for the result
of this simultation).
At the end of the side arm of the tube a flange (8) is welded which supports the main PMT
(3) and the window (4) in front of it. Finally the main PMT is enclosed by a plastic housing
(5) to prevent light from outside reaching it. To keep the PMT fixed at its original position
we support it by surrounding it with construction foam.
The complete setup is enclosed by a metal rack (6) which supports the three scintillators.
These are placed at a fixed position, 25cm above and below the Cherenkov detector. The
rack is equipped with wheels so it could slide easely in and out of its place in case there is
work to be done on the detector body. Photos of the detector and more detailed mechanical
drawings can be found at [8].

5.1.3 The gas system

To supply CO2 gas into the detector we use a standard gas bottle. Since the counter will be
operated at different pressures, we need to provide different overpressures (0.4/ 0.8/ 1.2 and

1Continuous spectra could not be found, therefore we use the upper limit of these parameters.
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Figure 5.1: Mechanical setup. Left shows a front view of the detector, on the right is a side
view. A particle enters the scintillator PMT3 from above, passing the radiator and finally
the two scintillators below. Cherenkov light is reflected by a mirror (1) and focussed on the
main PMT (3). Also seen are the housing of the main PMT (5), the glass window (4) held
by the flange (8), the pressure safety valve (2) and the metal rack (6).
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Figure 5.2: Result of the simulation to analyse the stress at the top part of the detector, up
to a pressure of 10 atm. The areas with large stress on them are shown by the brighter areas
(in green ) on the tube cover and at the sides, at the edges of the metal strips by small spots
(in red), with maximum stress of 5.92 · 102 N mm−2.

1.6 atm).
We have connected the gas bottle to the gas inlet at the bottom of the detector.
At the top part of the detector, a safety valve (5) is used, which is set up to release an over
pressure larger than 6 atm . To ensure the gas purity we need to get rid of the air that is
still inside the detector. This is done by removing the safety valve on top and using the
remaining hole as the outlet. We let the CO2 gas flow in from below and the air to go out
from above. Because CO2 is 1.5 times heavier than air, we know that after flushing, most of
the air inside the detector is removed. When we are finished, we close the outlet by placing
the safety valve back in its place. By letting the gas flow in from the bottle, we raise the
pressure to the desired value. After we have reached the desired value, we keep the inlet
valve open to establish a balance between the pressure in the detector and the one adjusted
with the pressure regulator at the outlet of the bottle.

5.1.4 Electronic setup

Coincidence unit

We have placed one quadratic scintillator 25cm above the top of the detector. Two larger
quadratic scintillators were placed 25cm beneath the bottom of the detector, in such a way
that their overlapping area equals the area of the upper scintillator. Each scintillator has
a PMT connected to it which collects the light from the scintillator and gives an electronic
signal; these are PMT1, PMT2 and PMT3. The output signal cables of the three PMTs are
fed into an electronic coincidence unit. The coincidence unit gives an output signal only if
the three PMTs had a signal at the same time. So, when the coincidence unit gives an output
signal it means that a charged particle has traversed through the entire detector body, top
to bottom, and assuming it is energetic enough, it has emitted Cherenkov radiation inside
the pipe. Therefore we use the signal from the coincidence unit as a trigger to our read-out
system.
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Read-Out system

The main photomultiplier tube of the Cherenkov counter is connected to a computer through
a read-out card. The output of the coincidence unit is also connected to the same read-out
card. To read and save the data from these two data channels we use a LabVIEW program
installed on our computer. The program was written by the NIKHEF project students of
winter 2003, who had built a water Cherenkov detector [7]. We use the three scintillators’
coincident signal as a trigger to the program. Whenever the program gets a trigger it saves
into a text file the values from the two data channels during a 1µs time window, starting
200nsec before the trigger and continuing 800nsec after the trigger. (Saving the pre-trigger
is essential as the Cherenkov signal starts before the trigger, saving the data long after the
trigger and signal is useful as we need to know the normal noise level). Later on we use the
text file to perform the data analysis.

5.2 Components

5.2.1 Scintillators

In our coincidence unit we use three organic scintillators. Organic scintillators can be classed
into three types, crystalline, liquid and plastic. In our case we are using the latter, which
are widely used in high energy physics.
When a high energy charged particle crosses the scintillation medium it loses energy by
exciting the molecules into higher energy levels. Some of the molecules will release a small
fraction (∼3%) of this energy as optical photons, this process is called scintillation. Most of
the excitation energy however, is given in the form of heat and lattice vibrations. Virtually
all plastic scintillators contains a base of either PVT (polyvinyl-toluene) or PS (polystyrene)
that contains aromatic rings. The base contain binary or ternary solutions of selected fluors.
These fluors have two main functions: (1) to efficiently re-radiate absorbed energy at wave-
lengths where the base is more transparant (wave-length shifter) and (2) to increase the light
yield of the scintillator. The scintillator efficiency is defined as the fraction of deposit energy
that transfers to radiation. The best organic scintillator has an efficiency of about 3.5%. For
a more detailed discussion about organic scintillators take a look at the particle data group
about scintillators and their references [2].

Calibration

Before using the scintillators we need to find out what the High Voltage (HV) is that max-
imizes the coincidence rate between the signals from PMT1,2 and 3 but is not too high in
order not to have too much noise and random coincidences. Therefore we put the three
scintillators on top of each other and look at the number of coincidences between PMT1, 2
and 3. We keep the voltage of PMT1 and 2 fixed at 2 kV and raise the voltage of PMT 3
in order to optimize the number of coincidence signals between PMT1, 2 and 3. The results
are given in table 5.1.

As we see from table 5.1, the plateau lies at approximately 1.85 and 1.90 kV.
Next, we set the voltages of PMT3 and PMT1 at respectively 1.90 kV and 2.00 kV and con-
tinue doing the same procedure described above but now with PMT2, counting the number
of coincidence signals of PMT1 and 3 up to 1000. The plateau of PMT2 was found at 1.75
kV and 1.80 kV for PMT1. Table 5.2 gives the final operation voltages for the three PMTs.
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Voltage Coincidence ] of readings Coincidence ] of readings
on PMT3 (kV) between PMT between PMT
1.65 1 & 2 1000 1 & 2 & 3 74
1.70 1 & 2 1000 1 & 2 & 3 156
1.75 1 & 2 1000 1 & 2 & 3 240
1.80 1 & 2 1000 1 & 2 & 3 310
1.85 1 & 2 1000 1 & 2 & 3 374
1.90 1 & 2 1000 1 & 2 & 3 385
1.95 1 & 2 1000 1 & 2 & 3 398
2.00 1 & 2 1000 1 & 2 & 3 397

Table 5.1: Results of the calibration procedure.

Voltage (kV)
PMT1 1.90
PMT2 1.75
PMT3 1.80

Table 5.2: PMT operation voltages.

5.2.2 Photomultiplier tubes

In the setup we are working with four photomultipliers, three connected to the scintillation
counters (PMT1, 2 and 3) and one main PMT for collecting the Cherenkov radiation re-
flected by the mirror.
A photomultiplier converts light into an electric signal. Figure 5.3 shows the essential ele-
ments. The two phenomena fundamental to the operation of a PMT are photoemission and
secondary emission. When a photon enters the PMT window it will transfer all its energy
to bounded electrons of the photocathode material giving a fraction of them enough energy
to escape. The free photoelectrons (p.e.) are then focussed and accelerated on to the first
dynode where they cause secondary emission. Suppose nc p.e. are focussed to the first dyn-
ode and the gain of the dynode is g1. Then the number of resulting electrons falling on the
second dynode is ncg1. This multiplication process repeats itself at all succeeding dynodes.
Finally when na is the number of p.e. collected by the anode, the current amplification A of
a ten-stage multiplier is A = na

nk
=
∏10

i=1 gi. In our case the amplification is about 6.5 · 105.
An important parameter relevant to the efficiency of our detector is, of course, the quan-

tum efficiency QE(λ). It is the ratio QE(λ) = nc
nγ

of the number of p.e. emitted, nc, to the
number of incindent photons, nγ . The absolute responsivity Sk spectrum of our PMT has
a maximum at 420nm with Sk = 90 mAW−1. The responsivity and the quantum efficiency
are related by the expression

QE(λ) = 1.24
Sk(λ)

λ
(Sk expressed in mAW−1 and λ in nm)

From this we can easily calculate that the upper limit of the quantum efficiency QE(λ)max

is approximately QE(λ)max=0.27.
Because the signals from the Cherenkov radiation are very weak, we need to work with a
PMT that has a very low noise. One important effect that can degrade the PMT’s perfor-
mance is known as dark current. The main causes of dark current noise are: (1) thermionic
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Figure 5.3: Photomultiplier tube diagram

emission, (2) leakage currents and (3) background radiation. At normal temperatures, ther-
mal emission is dominant.
We have chosen to work with a low noise PMT. The photocathodes inside this PMT are
made from a bi-alkali (SbKCs) material. At operating temperature of 10C◦ the number of
dark pulses per second is 70 compared to tri-alkali (SbNa2KCs) cathodes with a rate of about
1000 s−1. Furthermore it is important to take into account that the time required for the
dark current to settle down after switching on the PMT may delay the measurements for
half an hour or more.

The PMT window is made from borosilicate glass which is transparent in the UV range
of the spectrum. Contrary to fused silicate glass windows for example, this material has no
Cherenkov-effect contribution to the dark current.

The dynodes inside our PMT are linearly focused. This reduces the variation in transit
times between the 10 stages and makes a very fast response possible. Linear focused tubes,
in which the electron impact areas on the dynodes are small, are most sensitive to magnetic
effects. A magnetic flux density of ∼10mT could reduce the gain by 50%. To prevent such
disturbances our tube is surrounded by a mu-metal shield.

5.2.3 The mirror

Producing the mirror

The making of the mirror has been a creative process. The workshop is able to make a lot of
things, but it would take too much time to make a parabolic mirror out of wood or plastic.
Because of that we have chosen to buy a satellite dish of which we removed the paint by
hand. After this the dish has been cut in the right dimensions and chromed in a bath. The
reflection of chrome is 65% at 450 nm which is in the middle of the range of or PMT (which
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is [300,600]nm). The dimensions of the mirror are 36.2 cm by 25.7 cm. The depth at the
center, compared to the outer borders is 1.4 cm.

Figure 5.4: Geometry of the mirror.

5.2.4 The window

The opening within the flange, (8) in fig. 5.1, is closed with a borosilicate-glass window (4)
in front of the main PMT. One of the main advantages of this glass, on top of the fact that
it is UV transparent, is that it is far stronger then ”soft” glass. Because the boron oxide
particles inside the material are so small, the silicate is held together more closely resulting
in a much stronger glass. The thickness of the window we use is 25mm and the diameter
178mm, enough to resist pressures up to 40 atm. The transmittance curve Twin(λ) for a
window with a thickness of 3 mm is shown in fig. 5.5, which gives us 〈Twin(λ)〉3mm ≈ 0.88.
The curve from our window with a thickness of 25mm is just a power of this one2. From the
spectrum we can conclude that the transmittivity Twin(λ) within the accessible PMT range
[300,600]nm is approximately 〈Twin(λ)〉 = 0.55.

Figure 5.5: Window transmittance.

2The intensity drops as I0(d, λ) = e
− d

x0(λ) with d the window thickness. Then I0(25, λ) = e
− 25

x0(λ) =(
e
− 3

x0(λ)
) 25

3 =
(
0.88

) 25
3 = 0.55.
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5.3 Estimated detector response

We are now able to give an estimation on the collected number of p.e., assuming the photon
yield N calculated in chapter 4. Fig. 5.6 shows three of the relevant parameters from eq.
5.3 as functions of the wavelength.

Figure 5.6: CO2 transparancy T (λ), Cherenkov radiation distribution (in arbitrary units)
and quantum efficiency curves as functions of the wavelength λ.

From fig. 5.6 we see that the opaqueness of CO2 decreases rapidly after 200nm and
dissappears completely over the PMT-range [300,600]nm. The relevant parameters are given
in table 5.3.

QE(λ)max 〈Trad(λ)〉 〈Twin(λ)〉 R(λ)max εdet(λ)max

0.27 1.00 0.55 0.67 0.59

Table 5.3: Setup reduction parameters.

Then the maximum number of p.e. collected by the main PMT, given by eq. 5.4 will be

Np.e. = QE(λ)max εdet(λ)max N

= 12.44 (5.5)

This corresponds to a typical quality factor N0 (eq. 5.3) of about 76cm−1. Practical
counters, utilizing a variety of different photodetectors, have values between about 30 and
180cm−1. The real value of N0 must be lower than 76cm−1, because we did not include the
geometrical photon collection efficiency εcoll in our calculations.
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Chapter 6

Measurements and Analysis

The gas Cherenkov detector has finally been assembled and ready to take measurements in
January 2005. During the following two months a total of eight data sets were taken with
the detector, each one with a different gas composition and refractive index. The run time
for each data set was between 17-50 hours as we wanted to have large number of events for
the data analysis.

6.1 Event display

For each trigger, the output of the two data channels is displayed in real time on the computer
screen. Later we are able to display the events again using the output text file. For example,
in fig. 6.1 you can see a single event displayed. The blue (darker) curve gives the scintillators’
output channel, the red (lighter) curve gives the Cherenkov counter channel. In this case
the trigger (scintillator signal) is seen, but there is no signal from the Cherenkov counter. In
fig. 6.2 an event is shown containing a signal from the Cherenkov counter - this is the small
dip at 50nsec before the trigger. It is clear that the coincidence unit signal is much stronger
than the Cherenkov signal.

6.2 Presentation of the measurements

During the months January - February 2005 a total of 8 data sets have been taken with the
detector. Table 6.1 on page 52 gives the information about the different data sets. In the lit-
erature we found these values for n, the refractive index. For P = 1 atm and 0 ◦C conditions:
n(CO2) = 1.000410 , n(air) = 1.000293. For P = 1 atm and 25 ◦C: n(CO2) = 1.000500 and
for P = 1 atm and 20 ◦C: n(air) = 1.000273. We estimated the temperature at the hall
where the Cherenkov counter was taking measurements at 10 ◦ ± 3 ◦C, and so we calculated
the n0 that corresponds to these temperatures:

(n0(CO2)− 1) · 106 = 446± 10.8 , (n0(air)− 1) · 106 = 283± 3

For the first data set the pipe has been filled with CO2 gas up to a pressure of P = 1.7 atm
on top of the air at P = 1atm that was in the pipe. After the measurement, the safety valve
on top of the pipe has been opened so that most of the air could escape out of it. We then
closed the valve and let more CO2 gas flow into the pipe, so the second measurement was
done with P (air) = 0.37 atm and P (CO2) = 2.33 atm. We repeated the flushing procedure
after the second and the third data sets, so as from the forth data set the air pressure in the
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Figure 6.1: Single event display - trigger, no signal from the Cherenkov counter

Figure 6.2: Single event display - trigger and observable signal from the Cherenkov counter

50



detector was minimal, approximately P (air) = 0.06 atm. For each data set we calculated
the refractive index of the specific gas mixture and its error using the relations:

ntot − 1 = (n0(CO2)− 1) · P (CO2) + (n0(air)− 1) · P (air) (6.1)

Ptot = P (CO2) + P (air) (6.2)

We assume δPtot = 0.05 atm from the accuracy of the pressure meter, so we have

δP (air) =
P (air)
Ptot

· 0.05 , δP (CO2) =
P (CO2)

Ptot
· 0.05 (6.3)

We define the useful value ñ ≡ (ntot − 1) · 106, so we get the error to be

δñ =
√

(δP (CO2) · 446)2 + (10.8 · P (CO2))
2 + (δP (air) · 283)2 + (3 · P (air))2 (6.4)

The trigger rate is calculated by dividing the total number of triggers measured by the
time length of the measurement. The trigger rate should be approximately constant at all
runs, taking into account that the number of cosmic ray muons hitting the scintillators has
statistical fluctuations, and some day and night effect should be expected as well. If we look
at the trigger rate values, the calculated average is N̄trig = 303.3 trigger/hour. When we
measure the trigger rate we can expect a spread in the values according to 303.3±

√
303.3√

8
=

303.3±6.15. The 8 measured values are within 1.64σ distance from the mean, so we can say
that it is likely that these measurements represent the same value.
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6.3 Data analysis

The first thing we want is to select from the data sets the events that have a signal from
the Cherenkov counter in them. Once this selection has been done, several interesting values
such as the signal rate, average of the signal maximum height and signal to trigger ratio are
calculated. In order to optimize the data analysis and to be able to cross check our results
we have split into two teams, one team using the ROOT framework to perform the analysis
while the other team has worked with PAW.

6.3.1 Data analysis using PAW

First, we make a histogram of the mean pulse height of each data set. We find out that
the Cherenkov signal is between the 12th and the 24th bin. Then we add up all counts of
those bins and subtract half the sum of the counts which we found in the bins 1 to 12 and
24 to 36. This gives us a normalised spectrum of mean pulse heights as can be seen in fig.
6.3 on page 53. The spectrum is of course dominated by the data which do not contain
any events. The rightmost very large peak contains data without a Cherenkov signal. If we
would be able to subtract this peak, which is actually a gaussian, we should be left with
several smaller gaussians, where each gaussian represents Cherenkov events with a similar
number of photons reaching the main PMT. It is therefore important to remove the noise
peak without losing much of the events data.

Figure 6.3: PAW: Histogram of the first data set. The gaussian (rightmost) noise peak
around 0 is very clear and should be removed to find anything next to it.
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Sigma clipping

To remove the noise peak, some options have been tried. First we took the statistical
approach. This means that we wrote a program which rejects any pulse of which the maximal
deviation from the mean pulse value is separated more than three standard deviations (3σ)
from that mean. This approach should discriminate between noise and data with an accuracy
of 99.9% (which means that any point within those error bars is 99.9% sure to be a data
point). To see how sensitive the data are to such a cut we also plotted a graph of which the
rejection factor has been set to 6σ (fig. 6.4 on page 54). In the figures you can see how the
difference between the 3 and 6 σ cuts affects the rightmost data points. (You observe that
less events are left after the 6 σ cut. This is of course what one would expect, as when using
a 6 σ cut it is more likely that some real events would be rejected together with the noise).

Figure 6.4: Graphs of the statistical cut method. For the Left graph, a cut of 3σ has been
applied. The Right one represents the 6σ cut data. One can see that there is some effect of
the cut on the number of data points, so we should not exaggerate with this sigma level

Reconstructing a noise peak

As another method to subtract the noise we have reconstructed a noise peak in a similar way
we constructed the data set. To do this we have used the procedure described above for the
creation of the data histogram, but then started from the last bin backwards. So we added
up the counts from bins 100 to 88 and from bins 76 to 64 and subtracted half this number
from the sum of the bins 65 to 87. This created a peak which we normalised, based on the
maxima of the data noise peak and the just created one. Then we subtracted the normalised
noise peak from the data set. A typical result can be seen on fig. 6.5 on page 55. As one
can directly see from the figure, this method is not totally flawless. Because the noise is a
gaussian centered around 0 and because in principle all data yield a negative number, the
positive values of the data should be noise.
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Figure 6.5: Left: The noise peak created by counting the last bins of the data set. Right:
The data with this noise peak normalised and subtracted.

Mirroring noise over data

The last try we did to get rid of the noise was to mirror the positive part of the histogram and
to subtract the peak we created this way from the data. The result of this work is shown in
fig. 6.6 on page 55 and is similar to that of fig. 6.5. Another idea, which we did not manage

Figure 6.6: Left: The noise peak created by mirroring the positive values of the histogram.
Right: The data with this noise peak subtracted.

to work out in detail because of lack of time was to take one of the two ’artificial’ peaks and
fit a gaussian to them. Then a gaussian with the same Full Width at Half Maximum should
be fitted to the noise peak of the data. A quick fit however gave the same results as both
artificial peaks gave anyway.
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For the further processing of the data we have decided that we should use a 3σ clipping.
Sigma clipping is the method which leaves us with the best spectrum. We have chosen 3σ
because we think that this should leave as much real data as possible without contaminating
it with too much noise.
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6.3.2 Data analysis using ROOT

Similar to the PAW analysis we use a 3 σ clipping to select the Cherenkov events. We notice
that the Cherenkov signal always appears between -80nsec to 40nsec so we integrate over
this range. We calculate the average noise level using the ranges -200nsec to -80nsec and
400nsec to 520nsec, thereby we choose to take readings from times long after the trigger has
gone back up since the trigger has some fluctuations due to reflections when it goes back
up, as seen in fig. 6.2 on page 50, and this might induce a signal in the other channel.
Then we correct the signal level to signal on top of the noise level. We then plot the entire
Cherenkov signal level on top of the noise level for all the triggers taken in the Run. Fig.
6.7 shows this plot for run 8. The prominent peak on the right has in it triggers that do not
have Cherenkov events (so noise level only), the more spread out data on the left represents
signals of Cherenkov events. In order to select the Cherenkov events from this distribution
we calculate the average noise level and the standard deviation. For each measurement we
search for the minimum signal value between -80nsec to 40nsec. If the minimum value is
less than the average noise level subtracted by 3 times its standard deviation (σ) then this
measurement is declared a Cherenkov event. Fig. 6.8 on page 58 contains the entire signal
level (same value as in 6.7) but only for the selected events. Fig. 6.9 on page 58 shows the
distribution of the minimum signal level value of the selected Cherenkov events.

Figure 6.7: Run 8, the entire signal level from the Cherenkov counter for all the triggers
that were taken

The number of events obtained from this selection procedure is similar to that obtained
with the PAW analysis for most runs. After the selection certain values were calculated
from the Cherenkov events of each data set. These values are reported in the next chapter:
Results and Discussion.
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Figure 6.8: Run 8, selected Cherenkov events with 3 σ selection, the entire signal level from
the Cherenkov counter

Figure 6.9: Run 8, selected Cherenkov events with 3 σ selection, the minimum value of the
Cherenkov signal
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Chapter 7

Results and Discussion

In this chapter we present the results from our experiment. We start by reporting all the
obtained values in results tables and afterwards we present some of the more interesting
results in graphs. Later we show a comparison between the experimental results and the
simulation predictions. Finally we draw conclusions on the project and make suggestions
for the future work with our Cherenkov detector, which will hopefully help to achieve better
results with it.

7.1 Results tables

Table 7.1 on page 65 and table 7.2 on page 66 contain the results from the PAW and
ROOT data analysis. From the statistics in the two tables we see that the PAW and ROOT
analyses got similar figures concerning number of Cherenkov events in each run and the
mean of the minimum signal value. The ROOT analysis reports a larger number of events
than the PAW analysis for all runs, but the difference between the two is always smaller
than 5.8%, so not very big. Generally we observe that the mean of the minimum signal level
decreases (negative signal) as the refractive index increases. We see that the trigger level
is approximately constant and that the Cherenkov event rate increases with the refractive
index. The Cherenkov event to trigger ratio behaves the same way of course, as it is the
Cherenkov event rate devided by (approximately) a constant.

7.2 Graphic presentation of results

We now present graphically the interesting results obtaind from the analysis. Fig. 7.1 on
page 60 shows the Cherenkov to trigger rate ratio vs. the effective refractive index for the
eight data sets. Fig. 7.2 on page 61 shows the Cherenkov event rate vs. the refractive index
and fig. 7.3 on page 61 shows the minimum value of the Cherenkov signal vs. the effective
refractive index.
Looking at fig. 7.1 we see that as expected, the Cherenkov to trigger ratio increases with
the refractive index. But the eight data sets do not seem to agree completly, we cannot
reconstruct a curve that defines the ratio to refractive index relation that agrees with all the
data points. Naturally this is the case in fig. 7.2 as well. In fig. 7.3 we see that the minimum
signal value decreases with increasing refractive index, but similar to the previous plots, the
data points are not completley consistent.
We observed that in run1 and in run2 the measured Cherenkov to trigger ratio is smaller than
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what it is expected to be according to all the other measurements. The obvious difference
between runs 1 and 2 to the later measurements is that in the first three the measurements
were taken with a non-negligible amount of air in the detector. Therefore we searched and
found that both Nitrogen and Oxygen, which are the building blocks of air, have absorption
lines in the range of 300-600nm, which is the working range of the Cherenkov PMT [9] [10].
We then conclude that in these first 2 runs we have less Cherenkov events than what we
expect due to some absorption of photons by the air molecules, and this is why the data
points are not consistent with the rest of the measurements.
Looking at the minimum signal value plot we observe that runs 1 and 3 are not consistent
with the other measurements. Runs 1 and 3 give higher value than expected, which means
less photons than expected arriving to the PMT per Cherenkov event.
This observation of less strong signals agrees with the previous one if our understanding of
the reason for it is correct. However, we cannot explain why in the Cherenkov rate plots it
is run 1 and run 2 that are off while in the minimum signal value it is run 1 and run 3 that
are off.
Unfortunatly, due to the low number of measurements taken, and due to the apparent low
number of detected Cherenkov events in the first three measurements (lower number than
expected due to the air-CO2 gas mixture), we do not try to fit the measurements into curves
and compare the fit parameters to theoretical calculated values, which in most cases are not
at hand anyway. We shall compare our results to the simulation predictions.

Figure 7.1: Cherenkov to trigger rate ratio vs. the effective refractive index for the 8 data
sets.
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Figure 7.2: Cherenkov event rate vs. the effective refractive index for the 8 data sets.

Figure 7.3: Mean Cherenkov minimum value vs. the effective refractive index for the 8 data
sets.
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7.3 Comparison with simulation predictions

After recording the data sets with the detector we have run the simulation program with
the exact pressures of the data sets so we can compare between the two. The full simulation
output information is reported in table 4.2 on page 36. Comparison between the experimen-
tal data and the values obtained from the simulation is shown in table 7.3 on page 67.
We notice a few interesting things by looking at the table:

Trigger rate

Firstly, the simulated trigger rate is completely constant, as expected from a computer
program that was designed that way. The error for this value is calculated in the last part
of section 4.4. We notice the difference between the simulated trigger rate, 372.36 (1/hr),
and the average of the experimental trigger rate, 303 (1/hr). The experimental trigger rate
is smaller by ∼19% from the simulated value (however, this difference is only 1.25 times the
error of the simulated trigger, as the error is estimated at 15%). There could be several
reasons for that. The most obvious one is that our trigger setup, which includes three
scintillators, three PMTs and a coincidence unit, is not 100% efficient, but we also cannot
estimate its true efficiency precisely. This is not implemented in the simulated trigger rate
but, using an estimation of the efficiency, in its error. This is also the reason why the error
is relatively large.

And so we conclude that for the comparison to come, we should use the simulated trigger
and event rates subtracted by their calculated errors, in order to include the real detector
efficiency. And still, we should expect to find a difference of at least 4% between the “cor-
rected” simulated Cherenkov event rate and the measured one. This however should not
have an effect on the event to trigger ratio.

Cherenkov event rate

Secondly, we look at the difference between the experimental event rate and the simulated
one. Here the difference is much bigger. To simplify things we will look only on runs 4 to
8, as we have already seen before that runs 1 to 3 do not give us the statistics which are
consistent with the later runs. Starting from run 4 with low refractive index, in which case
the experimental value is 45% lower than the simulated one, and increasing together with
the refractive index, in run 8 the difference is more than 51%. It looks as if the difference in
the event rates is more than twice as big as the difference in the trigger rates. However, the
simulated event rate value has a rather large error, as seen and explained in the last part of
section 4.4. If we look at the event rate value subtracted by the estimated error, we get a
difference of only 22% to 29% for runs 4 to 8. If we continue and subtract the 19% which
is the correction “inherited” from the trigger rate we are left with a difference of 3% to 10%
between the simulated and experimental values.

Cherenkov event to trigger ratio

Next we look at the difference between the experimental Cherenkov event to trigger ratio and
the simulated value. Here the difference goes from 30% for a low refractive index run and up
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to 42% for high refractive index run. We believe that the large difference here is due to the
true efficiency of the Cherenkov detector itself. Some of the elements of the detector and their
effect of lowering down the efficiency of the detector were not implemented in the simulation:
the reflectivity in the mirror and the deviations from a perfect oval shape of the mirror. It
is also probable that other elements determining the efficiency of the detector which were
implemented in the simulation (like the transmittivity of the window, the quantum efficiency
of the main PMT and so on) decrease the detector’s efficiency more than what was expected.

7.4 Conclusions

• While working on the NIKHEF project we have learned the theory of Cherenkov ra-
diation and the technical aspects of how Cherenkov detectors work. We have had the
experience of working with mechanical engineers and the mechanical workshop. Also
we gained some experience working with PAW (using FORTRAN) and ROOT (using
C++).

• We conclude that our detector design has been very successful as we have a fully
working gas Cherenkov detector.

• Though we took measurements with the detector and analysed its data, we were not
able to obtain the energy spectrum of the atmospheric muons. To achieve the energy
spectrum many more data sets, and the abilty to determine the number of photons
reaching the PMT per event are necessary. As we believe that only very few photons
reach the PMT for every event, it is doubtful even for a run with high refractive index
if one can measure the energy spectrum.

• In our data analysis we did find for the Cherenkov event rate and the mean Cherenkov
minimum signal value the general behaviour that was expected from the theory.

• Comparing the experimental values of the Cherenkov event rate, the trigger rate and
the ratio between the two to the simulation predictions, we found that the experimen-
tal values are at most 2σ smaller than the simulation values. The largest difference
between the two was found in the event rate parameter. Other parameters show better
agreement between the experiment and the simulation. We conclude that, taking into
account its error range, which mostly represent our lack of knowledge of the detectors
true efficiency, the simulation programme describes the experiment well.

7.5 Suggestions for future work with the detector

• In the future we suggest to expel all the air from the pipe before starting to take
measurements, as we have seen that the air in the pipe reduces the number of detected
Cherenkov events.

• Using CO2 gas as a radiator, we did not manage to reach higher pressures than 2.8atm
since the gas condensated in the pipe at higher pressures. For future data taking with
the detector it would be advisable to use a different gas, preferably one with higher
refractive index than CO2, such as Freon gas, but more importantly a gas that could
be pumped up to higher pressures inside the pipe.

63



• The simulation program should be updated with the real detector efficiency which
should be estimated from the already analysed data, so for future runs of the detector
the simulation could give better predictions for the detected values.

• If more data sets with higher refractive index would be taken, one could fit a curve to
the data points in fig. 7.2 and compare the fit parameters with the theoretical values.
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